
InnovR 2019
4-EII INSA Rennes

On Automating Data Augmentation for Deep Image
Denoising
Eduardo Fernandes Montesuma1*, Florian Lemarchand1 and Maxime Pelcat1

Abstract
Despite their successful applications, deep learning models need a considerable amount of data to be trained.
When enough data is not available, data augmentation is an outstanding technique that populates datasets with
new artificial samples. However, to obtain a good augmentation policy it is often needed to enlarge the number
of hyperparameters to tune. Hence, a technique to automatically choose the best policies to augment data can
both save time and increase performances of models. This paper explores how policies predicted by the existing
AutoAugment technique can be extended to enhance deep image denoising. By using a Denoising Autoencoder
to restore artificially corrupted data on MNIST, EMNIST and Challenge datasets, the experiments shown that
augmentation policies based on geometrical transformations were able to increase the PSNR of restored images
by 9.1%, 8.9% and 1.2% respectively, on the best case. Moreover, the performance of denoising models is
analyzed under a variable amount of available training data, showing that the usage of data augmentation is
more critical in small datasets.

Keywords
Image Denoising — Deep learning — Image processing – Automatic Data Augmentation

1Department of Electronics and Industrial Informatics, INSA Rennes, Rennes, France
*Corresponding author: edumontesuma@gmail.com

Contents

Introduction 1

1 Related Work 2

1.1 Image denoising . 2

1.2 Data augmentation . 2

2 Methodology 3

2.1 Image Transformations 3

2.2 Child Network . 4

2.3 Controller Network . 4

3 Experiments and Results 5

3.1 Controller network training 5

3.2 Denoising performance 5

4 Conclusion 6

Acknowledgments 6

References 6

5 Appendix 8

5.1 Predicted sub-policies 8

5.2 Denoising summary . 9

5.3 Policy Performance with variable amounts data 10

Introduction
The training of machine learning models has evolved as both
processing and storing capabilities of computers have in-
creased. With increasing complexity, deep learning models
became the state-of-the-art in many tasks of classical signal
processing, such as image processing.

Among the branches of image processing, image restora-
tion deals with the digital restoration of corrupted images. The
sources of these corruptions are multiple, such as noise, blur
or even occlusions. Moreover, this field has great importance
in areas such as medicine [1] or astronomy [2].

Despite Deep Neural Networks (DNNs) represent the cur-
rent state of the art in image processing, these networks have
a major drawback: most deep learning algorithms require a
huge amount of data, which is a serious constraint for some
applications, such as medicine [3]. The main concern in-
volving the training of DNNs with small datasets is lack of
generalization. In more precise terms, once trained, the model
fails to correctly classify new samples. In that case, data
augmentation is proposed as an avenue to enhance learning
models.

Data augmentation consists in artificially creating new
data samples from existing ones. Indeed, as remarked in [4],
this method is regarded as an implicit regularization method,
meaning that it reduces the generalization error without ex-
plicitly constraining the model’s capacity.

Nevertheless, a significant effort is required when de-

On Automating Data Augmentation for Deep Image Denoising — 2/10

signing augmentation policies for a particular dataset. This
involves domain knowledge, and possibly adds new hyper-
parameters to tune. Hence, a method to automatically select
the best augmentations according to an evaluation metric can
save time in machine learning projects. This was the approach
taken by [5], which designs the AutoAugment algorithm to
search optimal augmentation policies in the context of image
classification.

Motivated by the state-of-the-art results yielded by such
algorithm, the present paper shows an adaptation of AutoAug-
ment to an image denoising context. Moreover, we seek to
investigate how augmentation policies act on diverse datasets,
how effective they can be on diverse datasets, and how their
performance is affected under a variable amount of data.

This paper is divided as follows, in Section 1, state-of-the-
art in image denoising and data augmentation are discussed. In
Section 2, the adaptations done to the AutoAugment algorithm
to predict optimal augmentation policies for image denoising
are described. In Section 3, image denoising through multiple
datasets using the policies predicted by the AutoAugment
algorithm are explored. Finally, Section 4 presents the paper
conclusions and perspectives.

1. Related Work
This section discusses the state-of-the-art for both denoising
and data augmentation methods. Acknowledging that nowa-
days the best methods make use of DNNs, the discussion is
based on learning-based models.

1.1 Image denoising
Image denoising is a particular case of a bigger problematic,
called image restoration. In image restoration, one has a
corrupting function y = η(x), where x is the original image,
y is the degraded image and η is a stochastic degradation
process. Hence, a mathematical model for a type of noise
describes how η corrupts the data x.

Using these definitions, there are plenty of noise models.
Among them, this paper targets two commonly used ones:
the Additive White Gaussian Noise (AWGN) model, and the
Salt and Pepper (s&p) model. It is worth mentioning that the
presented methods would extend to other noise models.

For the first type, the mathematical assumption used is,
η(x) = x+ ε , where ε is the noise component, distributed
according a normal distribution N (0,σ2). Commonly, the
degree of degradation in a AWGN noised image is measured
as a percentage of the image maximum pixel value, that is,
σ ∈ [0,100]%, where 100% represents the image maximum
pixel value.

For the s&p noise, 0≤ p≤ 1 is the probability of a pixel to
be disturbed. When disturbed, a pixel has equal probability to
become white (salt) or black (pepper). The intensity parameter
of this noise is, hence, the probability of disturbance. Further-
more, the degree of degradation of a s&p noise is expressed in
terms of percentage. For instance, for p = 0.2, approximately
20% of image pixels are affected by such noise.

To measure the level of corruption in a noised image, one
needs to have the noisy image y and the ground-truth x. The
Peak Signal to Noise Ratio (PSNR) is adopted as main metric
of noise level, which is measured in decibels as,

PSNR(y,x) = 10log10

(
(maxi, jxi, j)

2

MSE(y,x)

)
, (1)

MSE(y,x) =
1

H×W

H

∑
i=1

W

∑
j=1

(yi, j−xi, j)
2. (2)

To perform restoration on images contaminated with noise,
there are two approaches: classical signal processing tech-
niques, and learned models. While learning methods rely
on massive amounts of data to predict input reconstructions,
the classical approach rely on algorithmic strategies such as
filtering.

Concerning classical approaches for image denoising,
most of them rely on filtering as a way to separate the original
signal from the noise component. For instance, this approach
was taken in [6] by employing bilateral filters and [7], by
using collaborative filtering.

Nevertheless, a part of classical approaches represent a
half-way between common signal processing techniques and
deep learning algorithms. For instance, statistical approaches,
such as K-SVD [8] and Principal Component Analysis (PCA),
are data-driven algorithms that learn data representations that
exclude the noise components present in corrupted data.

Finally, deep learning based image denoising rely in the
feature extraction done by network layers. This is the case for
the Stacked Denoising Autoencoder technique proposed in [9],
where the neural network is trained to learn features robust
to noise. Such approach was further explored, by forcing the
autoencoders to learn sparse representations [10].

1.2 Data augmentation
Data augmentation policies have been widely employed to en-
hance classification performance on pattern recognition tasks,
such as Digit Recognition [11], or even other methods, such
as Super-Resolution Imaging [12] and Image Denoising [13].

To define an augmentation policy, one has to first define
the set of transformations that compose them. By following
the definitions of [5], a data transformation is a triple T =
(t, p,m), where t ∈T is the transformation type, p ∈P , its
probability, and m ∈M its magnitude. It follow, then, that a
policy is a set of transformations π = {T1, · · · ,Tn}.

It is noteworthy that in such setting, transformations are
stochastic. For a triple T = (t, p,m), and a batch of data,
transformation t is applied to each image in the batch with
probability p and magnitude m. That way data variability is
improved on each batch. To illustrate how policies act on
batches, Figure 1 is presented.

To define how well augmentation policies have performed,
it is necessary to define an evaluation metric, L . A policy π1
is said to be better than another π2, if it yields a higher score
in terms of the defined metric.

On Automating Data Augmentation for Deep Image Denoising — 3/10

Image 1

Original Subpolicy 1 Subpolicy 2 Subpolicy 3 Subpolicy 4 Subpolicy 5

Image 2

Image 3

ElasticDeform, 0.1, 1.4
Shear, 0.5, 4.0

FlipX, 0.3, -
TranslateX, 0.3, -3.0

FlipY, 0.3, -
TranslateX, 0.8, -4.0

TrasnlateY, 0.0, -1.0
Shear, 0.5, 8.0

FlipX, 0.5, -
Elastic Deform, 0.7, 2.8

Figure 1. Figure adapted from [5]. At the bottom, for each sub-policy the name of its composing transformations, followed by
its respective probability and magnitude are shown. Notice that a same batch of images is transformed into different samples on
each sub-policy.

Given that the intent of applying data augmentation is to
improve the generalization of learning models, L is often
defined as the validation classification accuracy, for classifica-
tion problems. In order to evaluate the quality of denoising
models, however, the PSNR metric is used.

The problem of choosing transformations can be posed
as a discrete optimization problem, that is, choosing a par-
ticular policy consisting of n transformations is a search
among (|T |× |P|× |M |)n choices. The optimal policy is
then chosen based on L , π̂ = argmax L (π).

Therefore, the search space scales exponentially with the
number of number of transformations in a policy. Hence,
brute-force algorithms can be rather inefficient and as time-
consuming as picking transformation by hand.

With this motivation, authors in [5] have defined an al-
gorithm based on reinforcement learning to find π̂ , the Au-
toAugment technique, which rely on Reinforcement Learning
to predict optimal policies.

Under the reinforcement learning framework, one has
an agent, and an environment which it interacts with. The
agent can take actions At onto the environment, which yield a
correspondent reward rt . By doing so, the agent manages to
change the systems state from St , to St+1.

By using these definitions, The problem environment is
the neural network training, which henceforth shall be called
child network. According to the algorithm developed in [5],
there is a second neural network representing the agent, which
the authors have defined as the controller network.

In such setup, the actions the agent can take are training
the child network following a given augmentation policy π . By
doing so, it yields an reward, which is the evaluation metric L .
The objective of the controller network is to predict optimal
policies, in order to maximize its rewards. This algorithm is
summarized on Figure 2.

Controller Network Trains child network
following policy π

Samples policy π

Updates controller weights with respect to reward r
Figure 2. Scheme of the strategy adopted in [5] to find
optimal augmentation policies. The controller is a neural
network trained to optimize the child network evaluation
metric.

2. Methodology
In this section, the algorithm proposed by [5] is used to predict
optimal augmentation policies for the denoising problem. In
Section 2.1 the transformations used to form sub-policies are
discussed. In Section 2.2, the architecture used for image
denoising is presented. Finally, in Section 2.3, the controller
network architecture and its training algorithm are detailed.

2.1 Image Transformations
To artificially augment the available data samples, the ap-
proach presented in [5] was taken. Being so, pairs of trans-
formations are used to define a sub-policy. A group of five
sub-policies is called a policy.

Each transformation can have one among a predefined
list of types. The set of available transformations is shown
on Table 1. Alongside its type, each transformation in a sub-
policy has another two attributes: a probability of application,
and a magnitude.

The hole of probability is to increase data diversity in

On Automating Data Augmentation for Deep Image Denoising — 4/10

each batch, as transformations are not always applied. More-
over, the magnitude parameter regulates the transformation
intensity. Figure 1 shows an example of policy application.

Transformation Type Min Max
Shearing1 -20 20

Horizontal Translation2 -0.2 0.2
Vertical Translation3 -0.2 0.2

Rotation4 -15 15
Horizontal Flip5 N.A. N.A.

Vertical Flip N.A. N.A.
Elastic Deformation6 0 7

Table 1. Available transformations for AutoAugment
algorithm.

Being so, each transformation is represented by a type, a
discretized probability value (between 0, and 1), and a dis-
cretized magnitude value (between a minimum and a maxi-
mum, depending on each transformation). The discretization
is took uniformly on each interval, having a length of 11. As
consequence, the search space consists of (7×11×11)10 ≈
1.9×1029 possible policies.

Concerning the transformations, shearing, translations and
rotation are affine geometric transformations, meaning that
for each of these transformations and image x, the resulting
transformed image y may be expressed as,

y = Ax+b, (3)

where A is a matrix, and b, a vector.
Elastic Deformation was proposed by [11] in the context

of MNIST dataset classification. For each pixel (i, j) in x, a
random displacement field is defined by u∼N (0,σ2). The
transformation is then defined as,

y = x+αu. (4)

Note that both the random field intensity α , as its variance
σ2 are hyperparameters.

2.2 Child Network
The purpose of the child network is to perform denoising on
input images. As the controller training process is independent
of child network architecture, its architecture is chosen to
be kept simple in order to optimize performance. For that
reason, a simpler approach was taken, than those mentioned
in Section 1. Therefore, an autoencoder is used to denoise
images, whose architecture is shown on Table 2.

1Computed in pixels.
2Computed as a percentage of image width.
3Computed as a percentage of image height.
4Computed in degrees.
5Flip transformations do not have an intensity value.
6Corresponds to the random field intensity α , for a fine-tuned variance

value of σ = 2.

Encoder network
Layer Kernel Size # of filters

Convolutional Layer 1 3 16
Max Pooling Layer 1 2 -
Convolutional Layer 2 3 8
Max Pooling Layer 2 2 -
Convolutional Layer 3 3 8
Max Pooling Layer 2 2 -

Decoder network
Layer Kernel Size # of filters

Convolutional Layer 1 3 8
Up-sampling Layer 1 2 -
Convolutional Layer 2 3 8
Up-sampling Layer 2 2 -
Convolutional Layer 3 3 16
Up-sampling Layer 2 2 -

Table 2. Child network architecture summary

As discussed in [9], the intent of autoencoders is to learn
an useful input representations through a pair of parametric
mappings, fθ1 : X →H the encoder part, and gθ2 : H →Y
the decoder part, where X is the input space, Y , the output
space and H is the hidden or latent space. The principal
attention to those kinds of networks is upon the latent space
H , where the input representations lies.

Although the original intention of the authors was not
to provide an algorithm for denoising, such architecture can
still be used for that end, since by training the autoencoder
using the proposed settings, it learns to reconstruct a clean
approximation to the corrupted input.

2.3 Controller Network
The design of the controller network follows the description of
an actor method [14], which work with parametric families of
policies, that is, π = πθ , where θ is the family parameter. By
using this definition, a neural network can be used to predict
policies, by letting letting θ be the its weights.

The particular choice of neural network architecture is not
important for the algorithm, however the same approach as
reported in [5, 15] was taken. In such setting, a Long Short-
Term Memory (LSTM) is used to predict each sub-policy, as
shows Figure 3.

In order to train the controller network, the same method
as [5] and [15] has been implemented, using the Proximal
Policy Optimization (PPO) algorithm [16].

Since policies are predicted using a neural network, they
can be parametrized through the network’s weights, here ex-
pressed as θ . The PPO algorithm, then, manages to update
the weights θ through the minimization of a surrogate loss
given by Equation 5.

Being rt =
πθ

πθold
, the probability ratio between the policies

predicted by θ , and those predicted by the old parameter
vector θold , the surrogate loss is expressed as,

On Automating Data Augmentation for Deep Image Denoising — 5/10

LSTM Cell

h1

Dense

o1

LSTM Cell

h2

Dense

I2

o2

LSTM Cell

h3

Dense

I3

o3

LSTM Cell

h4

Dense

I4

o4

LSTM Cell

h5

Dense

I5

o5

Policy Prediction

Initial Input

Figure 3. Schematic of controller architecture. An initial input is given to the first LSTM Cell, for which its output is fed into a
dense, fully connected layer, whose output is a probability distribution over transformations within a sub-policy. This
distribution is then fed into the next step, in order to acquire the probability distribution for the next sub-policy. As mentioned
early, each policy is composed by 5 sub-policies, hence the policy prediction step is based on five sub-policy distributions.

LPPO = Êt

[
min

(
rt(θ)Ât ,clip(rt(θ),1− ε,1+ ε)Ât

)]
. (5)

In Equation 5, ε is a hyperparameter. πθ is the current estimate
of policy probability distribution, while πθold , is the previous predic-
tion. Ê corresponds to the empirical mean operator, and Ât , to the
estimation of ”advantage”, a scalar defined as,

Ât = rt − b̂t , (6)

where b̂t is called baseline. The baseline corresponds to an estimate
of the value of the current prediction. The baseline may be estimated
through various methods. For instance, in [5] and [15], the authors
have used an exponential moving average over past reward values,
while in [16], the authors propose an additional neural network that
shares parameters with the controller.

Moreover, as [16] suggests, the optimization of Equation 5 can
be done through automatic differentiation, such as those implemented
in deep learning frameworks.

3. Experiments and Results
In this section, the enhancement done through policies predicted by
the controller network is explored. For that end, the neural network
architecture used for denoising is the one described in Table 2.

The code for the experiments was written in Python7, and is
available on a public Github repository8. To run the code, a Dell
Precision 5820 Desktop with RAM memory of 32GB, Hard Disk
memory of 500GB, processor Intel Xeon W-2125 4.00GHz, GPU
GeForce 1080Ti with RAM memory of 12GB, running Ubuntu 18.04
64 bits was used.

The section is divided as follows: in Section 3.1, the training of
the controller network is described, and the sampled optimal policies
are shown. In Section 3.2, denoising performance with augmentation
policies is compared through different datasets.

7https://www.python.org/
8https://github.com/eddardd/

Automatic-Data-Augmentation

3.1 Controller network training
In order to train the controller, the MNIST dataset was used to train
the child network several times. The train, validation and test data
was artificially corrupted with 25% AWGN.

To make the use of augmentations more critical, the amount of
data available was severely reduced, limiting the training data to only
100 data samples taken randomly, before training time, out of a total
of 50000.

In the experiments, each child network is trained through 500
iterations, and then, evaluated on a independent validation set. The
validation PSNR is used as the controller’s reward.

The controller is then trained following the PPO algorithm. It
is trained using Stochastic Gradient Ascent, with learning rate pa-
rameter of 1×10−3. The learning process was ran through a total of
500 epochs. Moreover, the baseline is estimated through a moving
average of windows size 3, and the ε hyperparameter set to 0.2,
as [16] suggests.

When comparing the training process with those found in the
literature, specially with [5], it is noteworthy that such training length
is rather insufficient to converge at an optimal policy. Therefore, the
controller network behaves as a random search method.

Despite its inefficiency, the controller still predicts relevant poli-
cies that improve denoising models. Therefore, during the controller
training, the five high scored policies are saved, so that their perfor-
mance can be further tested. A summary of those policies can be
found on Table 4, in the Appendix section.

3.2 Denoising performance
To effectively measure the policy improvement in a given problem,
models are trained with, and without augmentation policies on ar-
tificially noised data. These experiments are done with two types
of artificially noised data: one corrupted with AWGN, and other
corrupted with Salt and Pepper noise.

To further study how data transformations influence on different
datasets, these experiments are compared through three different
dataset: the MNIST, EMNIST [17] and Challenge9 datasets. All
these databases were artificially noised.

The augmentation policy used to train these datasets is Policy π5,
from Table 4. Each dataset is restricted to 500 samples, where the

9https://www.figure-eight.com/dataset/
open-images-annotated-with-bounding-boxes/

https://www.python.org/
https://github.com/eddardd/Automatic-Data-Augmentation
https://github.com/eddardd/Automatic-Data-Augmentation
https://www.figure-eight.com/dataset/open-images-annotated-with-bounding-boxes/
https://www.figure-eight.com/dataset/open-images-annotated-with-bounding-boxes/

On Automating Data Augmentation for Deep Image Denoising — 6/10

child network described in Section 2.2 is trained to perform denoising.
To that end, a first model is trained with augmented train data. It
is then evaluated on raw validation data. The result is compared to
a baseline, which corresponds to the validation performance of the
same model trained with non-augmented train data. In each run, the
child network is trained through 500 epochs, except for the Challenge
dataset, where the network was trained through 250 epochs. In all
runs, a learning rate of 0.02 and a exponential decay of 0.1 were
used.

In Table 3, a summary of denoising performance is shown. In
Figure 4 the denoising results are shown for an image sample of each
dataset, for each noise type.

MNIST Denoising
Noise Type Noise Intensity Performance Baseline Increase

AWGN 25% 17.82dB 16.43dB 8.4%
S&P 20% 17.51dB 16.05dB 9.1%

EMNIST Denoising
Noise Type Noise Intensity Performance Baseline Increase

AWGN 25% 18.32dB 17.47dB 4.9%
S&P 20% 18.39dB 16.88dB 8.9%

Challenge Denoising
Noise Type Noise Intensity Performance Baseline Increase

AWGN 25% 23.51dB 23.22dB 1.2%

Table 3. Denoising summary for three datasets.

Notably, the augmentation policies have yielded better results
in both MNIST and EMNIST datasets, having approximately 9% of
improvement over the baselines. Such behavior was already expected,
since the transformations in Table 1 were already know to improve
MNIST dataset performance [11]. Moreover, since both datasets
share geometrical structures, to transfer policies between these two
datasets is an easier task.

Nevertheless, the application of policy π5 on Challenge dataset
was less effective than its application on MNIST and EMNIST. Such
results are better understood by looking at the structure of these
datasets: since the Challenge dataset has a more diverse input space
than MNIST and EMNIST, the application of simple geometrical
transformations is less likely to enrich the input space data distribu-
tion. A better approach would be to consider a larger set of available
transformations, comprehending pixel and histogram transforma-
tions.

To further study how data availability impact on denoising per-
formance, another experiment is done. By training models with a
variable amount of available data samples, the performance with aug-
mentations is compared to the one without augmentations. The result
is displayed in Figure 5. By analysing those figures, the following
conclusions are drawn:

• As these figures show, the models are more sensitive to aug-
mentation policies in low data regime. This is due the fact
that, when enough data is not available, deep neural networks
tend to overfit the data.

• In the general case, using reasonable policies tends to enhance
the generalization performance of denoising models. The rea-
sons for this phenomena are that, first, augmentation policies
populate the input space with new artificial samples, enriching
the data distribution. Second, the transformed samples can
induce data invariances in the model [5], that is, it becomes
robust to rotation or translation, for instance.

4. Conclusion
The present paper was motivated by the reported success of data
augmentation policies in image processing applications [11, 12, 13].
To explore how data augmentation can be used to enhance image
denoising, the approach suggested by [5] was used under some
adaptations. Effectively, instead of using validation accuracy as the
reward of the controller, the validation PSNR was used.

To investigate how augmentation policies can enhance learned
models, a denoising autoencoder was trained twice, one time with
augmentation policies, and another without any transformations. By
limiting the size of each dataset, the results have shown a best-case
increase of 9.1% and 8.9% in the validation PSNR for MNIST and
EMNIST datasets, respectively.

To further analyse how the predicted policy may be extended
to other datasets, it was applied to the Challenge dataset, which is a
dataset with more diverse image samples. The results have shown a
performance increase of 1.2%, which was less significant than those
for the latter mentioned datasets.

Finally, the importance of augmentations under a variable amount
of available data was explored by comparing the performance of mod-
els trained with and without augmentation policies. As expected,
when data is insufficient for the model to have a good generalization
performance, augmentations play a key-role in preventing overfit-
ting. As the number of available samples increase, the performance
increase becomes more subtle.

Acknowledgments
This work was conducted during a scholarship supported by the In-
ternational Cooperation Program CAPES/BRAFITEC at the Institut
National de Sciences Appliquées de Rennes, Financed by CAPES –
Brazilian Federal Agency for Support and Evaluation of Graduate
Education within the Ministry of Education of Brazil.

References
[1] Larissa Cristina dos Santos Romualdo, Marcelo Andrade

da Costa Vieira, and Homero Schiabel. Mammography images
restoration by quantum noise reduction and inverse mtf filtering.
In 2009 XXII Brazilian Symposium on Computer Graphics and
Image Processing, pages 180–185. IEEE, 2009.

[2] Elena Anisimova, Jan Bednar, and Petr Pata. Astronomical
image denoising using curvelet and starlet transform. In 2013
23rd International Conference Radioelektronika (RADIOELEK-
TRONIKA), pages 255–260. IEEE, 2013.

[3] Luis Perez and Jason Wang. The effectiveness of data augmenta-
tion in image classification using deep learning. arXiv preprint
arXiv:1712.04621, 2017.

[4] Alex Hernández-Garcı́a and Peter König. Data augmentation
instead of explicit regularization. CoRR, abs/1806.03852, 2018.

[5] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan,
and Quoc V Le. Autoaugment: Learning augmentation policies
from data. arXiv preprint arXiv:1805.09501, 2018.

[6] Ming Zhang and Bahadir K Gunturk. Multiresolution bilateral
filtering for image denoising. IEEE Transactions on image
processing, 17(12):2324–2333, 2008.

[7] K Dabov, A Foi, V Katkovnik, and K Egiazarian. Image de-
noising by sparse 3-d transform-domain collaborative filtering.
image processing, ieee transactions on 16 (8), pp. 2080-2095.
2007.

On Automating Data Augmentation for Deep Image Denoising — 7/10

[8] Michal Aharon, Michael Elad, Alfred Bruckstein, et al. K-
svd: An algorithm for designing overcomplete dictionaries for
sparse representation. IEEE Transactions on signal processing,
54(11):4311, 2006.

[9] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-
Antoine Manzagol. Extracting and composing robust features
with denoising autoencoders. In Proceedings of the 25th inter-
national conference on Machine learning, pages 1096–1103.
ACM, 2008.

[10] Junyuan Xie, Linli Xu, and Enhong Chen. Image denoising and
inpainting with deep neural networks. In Advances in neural
information processing systems, pages 341–349, 2012.

[11] Patrice Y Simard, David Steinkraus, John C Platt, et al. Best
practices for convolutional neural networks applied to visual
document analysis. In Icdar, volume 3, 2003.

[12] Jin Yamanaka, Shigesumi Kuwashima, and Takio Kurita. Fast
and accurate image super resolution by deep cnn with skip
connection and network in network. In International Conference
on Neural Information Processing, pages 217–225. Springer,
2017.

[13] Peng Liu and Ruogu Fang. Wide inference network for image
denoising via learning pixel-distribution prior. arXiv preprint
arXiv:1707.05414, 2017.

[14] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms.
In Advances in neural information processing systems, pages
1008–1014, 2000.

[15] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le.
Learning transferable architectures for scalable image recogni-
tion. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 8697–8710, 2018.

[16] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford,
and Oleg Klimov. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

[17] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van
Schaik. Emnist: an extension of mnist to handwritten letters.
arXiv preprint arXiv:1702.05373, 2017.

On Automating Data Augmentation for Deep Image Denoising — 8/10

5. Appendix

5.1 Predicted sub-policies

Operation 1 Operation 2
Type Probability Magnitude Type Probability Magnitude

π1, Validation PSNR: 16.78
Sub-policy 0 TranslateX 0.2 -5.0 TranslateY 0.0 -1.0
Sub-policy 1 FlipX 0.3 N.A. TranslateX 0.0 -2.0
Sub-policy 2 TranslateY 0.1 0.0 TranslateX 0.4 2.0
Sub-policy 3 TranslateX 0.2 -2.0 Elastic Deform 0.2 -4.9
Sub-policy 4 FlipY 0.5 N.A. TranslateY 0.0 -2.0

π2, Validation PSNR: 16.84
Sub-policy 0 Elastic Deformation 0.1 1.4 Shear 0.5 4.0
Sub-policy 1 FlipX 0.3 N.A. TranslateX 0.3 -3.0
Sub-policy 2 FlipY 0.3 N.A. TranslateX 0.8 -4.0
Sub-policy 3 TranslateY 0.0 -1.0 Shear 0.5 8.0
Sub-policy 4 FlipX 0.5 N.A. Elastic Deform 0.7 2.8

π3, Validation PSNR: 17.04
Sub-policy 0 Shear 0.0 -20.0 TranslateX 0.0 -4.0
Sub-policy 1 FlipY 0.7 N.A. TranslateY 0.6 0.0
Sub-policy 2 Elastic Deform 0.9 2.1 TranslateX 1.0 -3.0
Sub-policy 3 TranslateY 0.0 -1.0 FlipY 0.4 N.A.
Sub-policy 4 FlipY 0.2 N.A. Elastic Deform 0.7 -2.8

π4, Validation PSNR: 17.11
Sub-policy 0 Elastic Deformation 0.1 6.3 TranslateX 0.2 -5.0
Sub-policy 1 TranslateX 1.0 -2.0 Shear 0.0 12.0
Sub-policy 2 FlipY 0.8 N.A. TranslateY 0.1 1.0
Sub-policy 3 Elastic Deformation 0.0 1.4 Shear 0.0 16.0
Sub-policy 4 Shear 0.7 -8.0 Elastic Deform 0.0 2.8

π5, Validation PSNR: 17.34
Sub-policy 0 Elastic Deformation 0.4 3.5 TranslateX 0.0 -4.0
Sub-policy 1 FlipY 0.6 N.A. TranslateY 0.0 -5.0
Sub-policy 2 Shear 0.9 -16.0 TranslateX 0.0 -2.0
Sub-policy 3 TranslateY 0.9 -3.0 Shear 0.1 -8.0
Sub-policy 4 FlipY 0.7 N.A. TranslateY 0.1 -4.0

Table 4. Summary of best sampled policies.

On Automating Data Augmentation for Deep Image Denoising — 9/10

5.2 Denoising summary

PSNR: 12.29 PSNR: 15.02 PSNR: 14.71

PSNR: 9.75 PSNR: 17.50 PSNR: 18.98

PSNR: 12.12 PSNR: 17.89 PSNR: 16.42

PSNR: 10.18 PSNR: 17.88 PSNR: 16.86

PSNR: 12.03 PSNR: 23.34 PSNR: 23.14

Figure 4. From top to bottom, a summary of denoising with and without the application of augmentation policy π5 for the
MNIST dataset (25% AWGN and 20% s&p), EMNIST dataset (25% AWGN and 20% s&p) and Challenge dataset (25%
AWGN). Notice that in each case, the predictions made by models trained with augmentation policies were better in terms of
PSNR.

On Automating Data Augmentation for Deep Image Denoising — 10/10

5.3 Policy Performance with variable amounts data

0 0.5 1 1.5
·104

12

14

16

18

Number of data samples

V
al

id
at

io
n

PS
N

R

MNIST Dataset with 25% AWGN noise.

Without policy
With policy π5

0 0.5 1 1.5
·104

10

12

14

16

18

Number of data samples

V
al

id
at

io
n

PS
N

R

MNIST Dataset with 20% s&p noise.

Without policy
With policy π5

0 0.5 1 1.5
·104

12

14

16

18

Number of data samples

V
al

id
at

io
n

PS
N

R

EMNIST Dataset with 25% AWGN noise.

Without policy
With policy π5

0 0.5 1 1.5
·104

10

12

14

16

18

Number of data samples

V
al

id
at

io
n

PS
N

R
EMNIST Dataset with 20% s&p noise.

Without policy
With policy π5

0 0.2 0.4 0.6 0.8 1
·104

23.1

23.2

23.3

Number of data samples

V
al

id
at

io
n

PS
N

R

Challenge Dataset with 25% AWGN noise.

Without policy
With policy π5

Figure 5. Performance comparison between models trained on augmentation data and raw data, under a variable amount of
available samples.

	Introduction
	Related Work
	Image denoising
	Data augmentation

	Methodology
	Image Transformations
	Child Network
	Controller Network

	Experiments and Results
	Controller network training
	Denoising performance

	Conclusion
	Acknowledgments
	References
	Appendix
	Predicted sub-policies
	Denoising summary
	Policy Performance with variable amounts data

